ANEMOMETER

IOT windspeed measuring device

16th. of May 2021

Authors:

Kim Holmberg Christensen Jorgen Drelicharz Greve

(Cor CATA (e

5181554 5181519

DTU - ELEKTRO
62547 - Embedded C/C++ Smart Applications

DTU

I

>

CONTENTS =
Contents

1 Introduction e 4

1.1 Problem statement L 4

1.2 Methodology e 4

2 Analysis e 5

2.1 Anemometer 5

2.2 Rate of transmissions L 5

2.3 Internet communication Lo 5

2.4 Transmission between anemometer base and basestationo Lo 5

2.5 Accessibilityo 6

2.6 Power Supply L 6

2.7 Requirement specification 6

3 Design and implementationo oL 7

3.1 System overview oL e e e e e 7

3.2 Anemometer hardware design 7

3.2.1 Electrical hardware L L 9

3.2.2 Schematics L e 10

3.3 Anemometer software design L L 12

3.3.1 wvoid getWindspeed(void) L 12

3.3.1.1 Analog to Digital Conversion 12

3.3.1.2 Half turn timingo 13

3.3.1.3 Windspeed calc 15

3.3.1.4 Calibrationo 16

3.3.2 woid transmitMps(void) 16

3.4 Basestation e 17

3.5 Wireless communication L 18

3.5.1 NRF24LO1 o e 18

3.5.1.1 void Write_ZNRF(char reg, char value) 19

3.5.1.2 char Read NRF(char reg) i i it 19

3.5.1.3 void Write_Buffer NRF(char dest, char * buffer, char amount_bytes) 20

3.5.1.4 void Read Buffer NRF(char dest, char * buffer, char amount bytes) 20

3.5.1.5 void Send_Data_NRF(char * buffer) 20

3.5.1.6 void NRF_FLUSH(void) e 20

3.5.1.7 void Read_Data_NRF(char *buffer) 20

3.5.1.8 char Data_Ready NRF(void) i 21

3.5.1.9 void startup NRF _delay(void) 21

3.5.1.10 void pwrup NRF(void) 21

3.5.1.11 wvoid config NRF(void) 21

3.5.2 ESP8266 e 22

4 Test s e 23

4.1 Requirement 1 - Windspeed L 23

4.1.1 Test script o o o e e e 23

4.1.2 Test performance 23

4.2 Requirement 2 - Transmission rate L. oL e 24

4.2.1 Test script o e 24

4.2.2 Test performance L e e e 24

4.3 Requirement 3 - Transmission type e 25

4.4 Requirement 4 - IOT 25

4.4.1 Test script o L e 25

4.4.2 Test performance e 25

4.5 Requirement 5 - Accessibility 26

4.6 Requirement 6 - Battery L 27

Anemometer

Page 2 of 54

o>

CONTENTS =
5 Conclusion 28
A Appendix e 29
Al anemometer.Cc e 29
A2 anemometer.h 35
A3 NRF.C . . e 37
A4 NRF.L . . e e 41
A5 anemometer Main.C e e e e e e e e 44
A.6 basestation main.c e 46
AT esp8266.0N0 e 49
A8 post-esp-data.phpo 53

Anemometer Page 3 of 54

=
—
=

i

1 INTRODUCTION

1 Introduction

1.1 Problem statement

The problem that we would like to solve is having a way to tell how windy it is outside right now. This could be done
in a number of ways but the way we would like to do it is with the help of technology in the form of microcontrollers
and other electronic devices. And preferably we would like to have that data available to us everywhere we go.

The first challenge we face is a sensor or device that can measure the current wind force also called an anemometer.
This is a device that most often has either a propeller or scoops that can be moved by the wind and then some device
that can measure that movement. In our case that device should be something that can communicate the movement
to a PIC microcontroller.

The next couple of challenges we face is that the anemometer should be placed in a spot where the wind can hit it
unobstructed. Often that means that the distance from a device that can communicate with the world wide web, a.k.a
a router, is too great for wifi to reach and mains power would require a long extension lead. Therefore the anemometer
will need to communicate via some kind of long distance wireless technology and preferably be powered by batteries
and a solar panel.

The wireless technology mentioned above will then require a receiving device which is closer to the router like a bases-
tation that can relay the data sent from the anemometer via the router and and out on the internet where it can be
viewed on a webpage.

1.2 Methodology

Primarily our own understanding of electronics and some google research lays the basis for our choice of our anemometer
design. We had the idea from the beginning that a DC motor could be used as a rotation measuring device but in our
research we found that there were more frictionless methods of designing an anemometer.

Anemometer Page 4 of 54

=
—
=

i

2 ANALYSIS

2 Analysis

2.1 Anemometer

There is more than one way to engineer an anemometer. It is possible to use a small DC motor and then measure the
voltage it outputs when turned by the wind, but unless you have a friction less motor a lot of energy will be lost due
to friction which is why we did not choose this solution. Another way to do it could be to have a LED shine onto a
photo resistor and have the rotor block the light every time it comes around. Then it would be possible to measure
the time it takes to go one round form the dip in voltage over the photo resistor and then calculate the windspeed
from that. Lastly and the way we chose to engineer our anemometer due to the simplicity and relatively friction less
design, is to have two magnets turning around a hall sensor. One magnet with its north pole facing the sensor and one
magnet with its south pole facing the sensor. When the north pole passes the sensor it outputs around 450mV and
when the south pole passes it outputs about 0V. From that it is possible to time how long it takes to go one round
and again to get the windspeed from that.

2.2 Rate of transmissions

An important subject in this project is the ”smart application” concept which means that the system should be able
to make decisions by it self. We chose that our system should be able to transmit data more often if the windspeed is
high.

2.3 Internet communication

One of the primary goals of the assignment was connectivity to the internet. Since the COVID-19 situation limited
our ability to access components at DTU we decided to go with ESP8266 WIFI Wireless Module for the transmission
of measured data to the internet. This module seemed like the go to module for WiFi connectivity for many MCU
projects.

2.4 Transmission between anemometer base and basestation

Working out how the data exchange between the Anemometer and the Basestation should happen a couple of soloutions
was discussed.

First a wired connection was discussed, here Serial Peripheral Interface (SPI) and Universal Asynchronous Re-
ceiver/Transmitter (UART) were the two types that came to mind. SPI communication are limited by a relatively
short cable length(10 meters), so this solution was ruled out. UART are not as limited by cable length as SPI however
the maximum cable length are given as a combination of BAUD-rate and the capacitance of the used cable. Further-
more it was discussed that interference in the cable could cause a loss of data. Lastly the setup of the Anemometer
in an area with a minimum wind of disturbance, to ensure quality measurements, could require long cables. Due to
these factors it was decided to go for a wireless communication solution for the project.

For wireless communication three solutions was discussed:

e Bluetooth
o WiFi
e RF

Due to limitations of time and resources it was decided to buy low-cost modules that met our requirements.

A Bluetooth module would meet the requirement of wireless communication, but the transmission range could be a
problem, the range was 10m — 60m. Bluetooth allowed connection to a PC or smartphone for debugging and data
reception as well as security (Password) could enhance the security. The price for the modules were the highest of
three solutions, even for the module with only 10m range were more than double the price of the other communication
alternatives. Due to the price and range we ruled out Bluetooth for this project.

Anemometer Page 5 of 54

=
—
=

i

2 ANALYSIS

A WiFi module seemed to be a good choice, the ESP8266 WIFI Wireless Module, have an acceptable price as well as
the range for these modules seems to work for distances between 25m and above 100m however we were not able to
get any exact maximum distance only some estimations from other users around the world. We already planned to
use this module for the IOT part of the project in the Basestation, but were cautious using this for the Anemometer
due to the relative high operating current of =~ 80mA, hence the limitations of battery lifetime.

A RF module would come at a low price, with lower operating current than the ESP8266 as well as a good range of
=~ 100m for the cheapest module and up to 1000m for a larger module. Furthermore it seemed like a good choice to
handle the task of a stable, cheap and simple solution of exchanging data between the Anemometer and the Basestation.

2.5 Accessibility

For making the measurements available on the internet, we decided to go with the ESP8266 module for reasons
mentioned above. The ESP8266 module can be utilized both as webserver and simply as a station that can transmit
data to a server on the internet. We wanted to be able to collect a lot of data and keep it which is why we went with
using the ESP8266 module as a station that relays data to a SQL' database server. The data on the server can then
be accessed from a webpage and used to whatever purpose you would like.

2.6 Power Supply

From the start it was decided to design the system with two MCU’s, one Anemometer and one Basestation.

The Basestation was tought of as a relaying station where measured data was received from the anemometer and
routed to the website via the ESP8266 module. Due to the wireless communication with the two MCU, the Basesta-
tion could be arranged inside and close to a permanent power supply, therefore a battery power supply for this part
of the project was ruled out.

For the Anemometer a permanent power supply could limit the locations for setup just at a wired data-line be-

tween the two MCU’s were ruled out. Here a battery pack with rechargeable batteries and a solar panel would make
a perfect fit for this project, but is still a low priority since this would just be a nice feature of the project.

2.7 Requirement specification

’ No.: ‘ Requirement: ‘ Description: ‘ Prior.: ‘ Met: ‘

1 Windspeed The system should be able to measure windspeeds between | high N
0.5 m/s and 60 m/s.

2 Transmission rate At higher windspeeds the measurement transmissions | high v
should increase.

3 Transmission type Wireless transmission between anemometer and basesta- | med N
tion.

4 IOT (Internet Of Things) | Should be able to transmit data wirelessly to the internet. | high Vv

b) Accessibility Measurements should be available at a website. high v/

6 Battery The anemomter should be able to run on batteries and a | med X
solar panel.

IStructured Query Language

Anemometer Page 6 of 54

3 DESIGN AND IMPLEMENTATION

=
—
=

i

3 Design and implementation

3.1 System overview

Anemometer
sensor

AiC UA|RT
ANEMOMETER BASESTATION
PIC24FJ256GA702 PIC24FJ256GA702
SPI SPI

NRF24L01 f-=--=-==-=--=-- RADIO----====-==-~ NRF24L01

Figure 1: System overview

As seen on the above figure the anemometer sensor transmits a square wave signal representing the current windspeed
via a wire to the anemometer base (PIC24FJ256GA702). The anemometer base processes that signal and transmits it
via SPI? to a radio module (NRF24/L01) which relays the transmission wirelessly to the other radio module. The other
radio module then transmits the data to the basestation which relays the transmission to the wifi module (ESP8266)
via UART. Then the wifi module which is connected to a router via wifi transmits the data via a website to a SQL
server. At last the data is fetched from the SQL server by a website where the data is displayed weather.jorgengreve.dk.

Our main focus in this project has been to get data from the anemometer sensor to the basestation PIC microcon-
troller. Therefore the "path” from the basestation to the world wide web is not described in detail in this report
but the code is attached in the appendix where esp8266.ino is the Arduino IDE code for the ESP8266 module and
post-esp-data.php is the code for the webpage the wifi module transmits its data to. The code for the webpage that
fetches the data from the SQL server is not included because it is a wordpress® website which has primarily been built
with a WYSIWYG* editor. But as mentioned earlier that part can be viewed live at jorgengreve.dk.

The ESP8266 wifi module has been programmed in Arduino IDE with the help from Random Nerd Tutorials
www.randomnerdtutorials.com this also applies to the webpages and the SQL server setup. A lot of the code from
Random Nerd Tutorials has been altered to suit our needs.

3.2 Anemometer hardware design

Our goal was to engineer a system that would work in the real world which is why we chose to spend a lot of time in the
beginning of the semester designing a fully working 3D printable anemometer in Autodesk Fusion 360. We are currently
at version 4 which has proved itself to be an acceptable version. It has per 11th. of may 2021 been working flawlessly
for a month. A youtube video of the anemometer at work can be viewed here https://youtu.be/4FcZ-f89uGU.

2Serial Peripheral Interface
3www.wordpress.org
4What You See Is What You Get

Anemometer Page 7 of 54

https://weather.jorgengreve.dk
https://randomnerdtutorials.com/esp32-esp8266-mysql-database-php/
https://youtu.be/4FcZ-f89uGU

=
—
=

i

3 DESIGN AND IMPLEMENTATION

Figure 2: Anemometer @ work

We have created a small Fusion 360 anemometer explode view video that displays almost all the parts of the anemome-
ter (The ball bearings are not included) the video can be viewed on https://youtu.be/TXc9oVmYras. The figure below
shows the anemometer prior to assembly with all parts except the wire.

Figure 8: Anemometer disassembly

The anemometer works by having a neodymium magnet north pole and south pole passing by a hall sensor which acts
like a switch. This creates a square wave signal we can use to interpret the windspeed from by timing for how long its
high and low.

Anemometer Page 8 of 54

https://youtu.be/TXc9oVmYras

=
—
=

i

3 DESIGN AND IMPLEMENTATION

High wind Low wivd.

L
O@”‘V @V_ H:H:u: H

Figure 4: Anemometer concept drawing

We have chosen to do the timing with timer interrupt because we need to know the time between two counts to
calculate the total time. We let a timer interrupt every 10us and every time it interrupts we count a variable one up.
When the north pole magnet passes the hall sensor and thereby creates a "high” ADC output we reset the counter
variable and let it count until the south pole passes the hall sensor and the ADC output goes ”low”. Then we use the
counter variable value to calculate how long the half turn took by multiplying the counter value with the interrupt
time. This is then multiplied by 2 to get the time a whole turn would take and to get how many turns per second
that is we divide 1 by the turn time.

trnTime = 2(intrrCnt - intrrTime)
tps =

trnTime

Now we have how many turns the anemometer has made in one second which is then multiplied with the distance one
turn is to get the uncalibrated windspeed. At last we multiply the uncalibrated windspeed with a calibration factor
to get the windspeed in meters per second.

wsUnc = trnDist - tps

mps = wsUnc - calibFact

3.2.1 Electrical hardware

The electrical hardware is still working out of a breadboard setup but the plan is to design PCB’s so that the whole
project can be mounted in plastic casings.

Anemometer Page 9 of 54

3 DESIGN AND IMPLEMENTATION

Figure 5: Hardware breadboard setup

As seen on the above figure (A) is the PIC24FJ256GA702 anemometer microcontroller and (B) is the PIC24FJ256GA 702
base station microcontroller. The anemometer output is fed into (A) which processes the windspeed and then transmit
the data in the format "WX.XXX” (or ?"WXX.XX” if its more windy) via the far right NRF24L01 chip to the far left
NRF241.01 chip and into (B) which just relays the data to the ESP8266 module and then its finally transmitted to
the server. Every time a NRF24L01 transmission happens the green and yellow LED toggles, this is just for testing
purposes.

3.2.2 Schematics

Below are the schematics for the anemometer and the basestation. Decoupling capacitors are included in the schemat-
ics but not on the breadbords.

Anemometer Page 10 of 54

ETE

>
3 DESIGN AND IMPLEMENTATION >
1 2 3 4
oYL
U1 VDD
o] [PIC24FJ256GA702-I/SP
o
Al xF= A
220
; MCIR AVDD/VDD gg 100nF |
c1 R2 3] VREF+/CVREF+/ANO/C3INC/RP26/CTEDL/RAO AVSSNSS 26 c3
— T VREF-/CVREF-/AN1/C3IND/RP27/CTED2/RA1 AN9/C3INA/RP15/CTED6/RB15 ?
100nF 5— PGD1/AN2/CTCMP/CZINB/RPO/RBO CVREF/ANG/C3INB/RP14/CTED5/RB14 7
|| " T PGC1/AN1-/AN3/C2INA/RPL/CTED12/RB1 AN7/C1INC/RP13/OCM1D/CTPLS/RB13 o3 L]
7 AN4/C1INB/RP2/SDA2/CTED13/RB2 ANB/LVDIN/RP12/RB12 =Ty
ra ANS5/CLINA/RP3/SCL2/CTED8/RB3 PGC2/TMS/REFI1/RP11/CTEDY/RB11 1
) VSS_2 PGD2/TDI/RP10/OCM1C/CTED11/RB10 20
L} 10] OSCI/CLKI/CLIND/RA2 VCAP =Ty
Io%] BT OSCO/CLKO/C2IND/RA3 VSS 8
B — T SOSCI/RP4/RB4 TDO/C1INC/C2INC/C3INC/TMPRN/RPO/SDAL/T1ICK/CTED4/RBY 17 %7 B
TlOO E F SOSCO/PWRLCLK/RA4 TCK/RP8/SCL1/OCM1B/CTED10/RB8 6
n 14 VDD RP7/OCM1A/CTEDS3/INTO/RB7 5
PGD3/RP5/ASDAL/OCMI1E/RBS PGC3/RP6/ASCL1/OCM1F/RB6
VDD =
Iy
| Ty -
NRF24L1
ANEMOMETER1
IR MISO
C o voo [RO 1 rg miso C
: MOSI MOSI SCK SCK
OuT ouT
CSN CSN CE CE
GND GND
— VDD oy VCE 1 yoc onp |END L]
ANEMOMETER
NRF24L01
D D
Anemometer_base
10/05/2021 16.23
Sheet: 1/1
1 2 3 \ 4
Figure 6: Anemometer base schematic
Anemometer Page 11 of 54

3 DESIGN AND IMPLEMENTATION

Ma

OVDD
U1 VDD
o] [PIC24FJ256GA702-I/SP
A Ry S]t A
220
0—:7; MCIR AVDDNDD ;f 100nF |
o1 R2 —£—{ VREF+/CVREF+ANO/C3INC/RP26/CTEDLRAO AVSSIVSS 26—‘ s
_‘ ——1 VREF-/CVREF-ANL/C3IND/RP27/CTED2/RAL ANO/C3INA/RP15/CTED6/RBLS —=2-
To0nF ——| PGDLAN2/CTCMP/C2INB/RPO/RBO CVREF/ANG/C3INB/RP14/CTEDS/RBLA (2= J—\/
" —— PGCLAN1/AN3/C2INARP1/CTED12/RBL AN7/CLINC/RPL3/OCMID/CTPLS/RBL3 (—2- L]
V4 —— AN4/CLINB/RP2/SDA2/CTED13/RB2 ANS/LVDIN/RP12/RB12 T;
N —5—| ANS/CLINA/RP3/SCL2ICTEDE/RB3 PGC2/TMS/REFIURPILCTEDO/RBIL —22-
o] Vss.2 PGD2/TDI/RPL0/OCMIC/CTEDIVRBLO 25
FAN o1 OSCI/CLKICLND/RA2 VCAP £
& 1| OSCO/CLKO/C2IND/RA3 vss -
B e <,| SOSCIRP4/RBA TDOIC1INC/C2INC/C3INC/TMPRN/RPY/SDALTLCK/CTED4/RBY 1——- . % B
—l_loo c 5| SOSCOPWRLCLKRA4 TCK/RP&/SCLUOCM 1B/CTEDIO/RBS | — o~
n 551 VoD RP7/OCM1A/CTEDS/INTO/RB7 | — -
PGD3/RP5/ASDAL/OCM1E/RB5 PGC3/RP6/ASCLI/OCM1F/RBE
VDD =
#,
|| Y -
NRF24L1
ESP1 RQ | |rg miso |MISO
RXD vee MOSI SCK
/
c RXD vee VDD MOSI SCK c
GPIQ0_{ gpioo RrsT [RST CSN 1 csn ce |-CE
GPIQ2 1 Gpio2 cHpp |-CSH-PD VDD VEC 1 voc onp [CND
e a0 o [TXP
NRF24L01 L]
ESP8266
Basestation
10/05/2021 17.06
Sheet: 1/1

Figure 7: Basestation schematic

3.3 Anemometer software design

Both the anemometer PIC microcontroller and the basestation PIC microcontroller has been set up with MCC®.

3.3.1 void getWindspeed(void)

The getWindspeed() function is furthermore divided into the following sub categories.

3.3.1.1 Analog to Digital Conversion

The analog signal from the anemometer which is either 0V or 450 mV is being converted by the ADC to a value of
either 0 or 3300. The digital value is then used to determine if the anemometer output is low or high as seen on the

below ADC conversion flow chart.

5MplabX Code Configurator

Anemometer

Page 12 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

ADC
conversion

rue— ADCresult = 1

conversion > ADCresHIGH

falise

conversion >= ADCresLOW rue— ADCresult = 0

falise

== =")

Figure 8: ADC conversion flow chart

3.3.1.2 Half turn timing

To time how long one turn on the anemometer takes we start a timer tmrlintrrCntl = 0 or tmrlintrrCnt2 = 0 (see
timing under section 3.2) when either of the two magnetic poles pass by the hall sensor and then we stop the timer
when the opposite pole of the one that started the timer pass the hall sensor. Every time a pole passes the sensor one
timer starts, the other timer stops and an interrupt count is ready, intrrCntiready = 1 or intrrCnt2ready = 1. The
whole process can be seen in the below flowchart.

Anemometer Page 13 of 54

3 DESIGN AND IMPLEMENTATION

=
—
=

i

From ADC conversion

ADCresult = 1
switchVar1 = 0

false

intrrCnt2 = tmr1intrrCnt2
rue P! tmr1.intrrCnt1 =0
switchVar1 = 1
switchVar2 = 1

switchVar3 = 1
halfTrn2¢ent < 2

intrrCnt2ready = 1
switchVar3 = 0
halfTrn2cnt = 0

false

rue—

intrrCnt2ready = 0
halfTrn2cnt = 0

<>

false

halfTrn1cnt++

i

ADCresult =0
switchVar1 = 1
switchVar2 = 1

false

intrrCnt1 = tmr1intrrCnt1
tmrlintrrCnt2 = 0
rue—P switchVar1 =0
switchVar2 = 0
switchVar3 = 1

true—P

intrrCnt1ready = 1
halfTrnient = 0

*

false

rue—’

intrrCnt1ready = 0
halfTrn1cnt = 0

halfTrn2cnt++

1)

To windspeedCalc

Figure 9: Half turn timing flowchart

In the below table column Init is the value that the variable is initialized with. Column 1. shows the initialization
half turn on the anemometer. The half turn timing always start with a high output from the ADC when it starts up
from being shut down and if the anemometer is at a standstill the output of the system will be 0.00 m/s until the

anemometer starts turning. Columns 2. to 6. shows a repeated pattern of receiving a high or low ADCresult and then
outputting intrrCnt(1/2)ready and the result intrrCnt(1/2)

Anemometer

Page 14 of 54

3 DESIGN AND IMPLEMENTATION

=
—
=

i

Variable:

‘ Init: ‘

ADCresult

switchVarl

switchVar2

switchVar3

halfTrnlcnt

halfTrn2cnt

intrrCntlready

intrrCnt2ready

1
1
1
1
0
1
0
0
0

[en) Henl Hev) Hen) Nev) Nev) Neaw)

—| o o = o | | ||t

intrrCntl = tmrlintrrCntl

Mol ~|olrlololo|| N
S ol —=o|—|lololo|

Mool —lololo||&

intrrCnt2 = tmrlintrrCnt2

X X

>

Table 1: Half turn timing truth table

3.3.1.3 Windspeed calc
The windspeed is calculated only if intrrCnt(1/2)ready has been set in half turn timing because only then has the half
turn been timed and the result is ready to be processed. This is done like it is described under section 3.2 and like in
the flowchart below. The windspeed calc part of the get Windspeed() function outputs the calibrated windspeed mps

and a flag (mpsReady) that tells the function transmitMps() that a wind measurement is ready to be sent.

false

From half turn timing

intrrCnt1ready = 1

intrrCnt1ready = 0
trnTime = 2*(intrrCnt1 * intrrTime)
intrrCnt1 =0
trnTimeReady = 1

false

intrrCnt2ready = 1

intrrCnt2ready = 0
trnTime = 2*(intrrCnt2 * intrrTime)
intrrCnt2 = 0
trnTimeReady = 1

trnTimeReady = 1

false

tps = 0.0001

v

wsUnc = trnDist * tps
mps = wsUnc * calibFact
trnTimeReady = 0
mpsReady = 1

«»

Figure 10: Windspeed calc flowchart

rue @ rueAD‘ tps = 1/trnTime

Anemometer

Page 15 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

3.3.1.4 Calibration

The system can be calibrated by changing the calibration constant calibFact. The calibration constant is multiplied
with the uncalibrated windspeed reading wsUnc so that it is possible to adjust the reading to match the exact wind-
speed. At the moment the anemometer has been loosely calibrated by checking the anemometer readout and adjusting
calibFact until the readout matched current local wind data from dmi.dk. At the moment calibFact has been set to
6. The anemometer should be calibrated more thorough before relying solely on the readings. This could preferably
be done in a windtunnel where you know the exact windspeed but it is also possible and much less expensive to buy
a precalibrated anemometer and adjust ours to match or simply stick it out a car window at a certain speed an count
the anemometer revolutions.

3.3.2 void transmitMps(void)

The ”smart part” of the system lies in the transmitMps() function as the systems ability to adjust the rate of
transmissions according to the current windspeed. This is done by the mathematical function:

sendSpeed = —383 - mps + 25000

The function comes from a calculation done as below in Maple where the windspeed in m/s is found on the x-axis and
the transmission delay is found on the y-axis.

xl:=10.0:

¥2:=60.0:

vi == 25000

y2:=2000:

a=2272L _ 353 3333333000
x2—xI

b = y1=25000

fix) =ax+b=x—ax+b

plot(f(x),x=0.060, gridlines

25000+

20000+

15000

10000

5000

Figure 11: Transmit speed Maple calculation

The transmission delay is called sendSpeed in the flowchart below and is simply a variable value that is calculated from
the mathematical function mentioned earlier and the current windspeed. This is then compared to a variable (cnt1)
that is counted one up every time the transmitMps() function is run. When cnt! is larger than the current sendSpeed

Anemometer Page 16 of 54

www.dmi.dk

3 DESIGN AND IMPLEMENTATION

=
—
=

i

value and a windspeed reading is ready (mpsReady = 1) the windspeed reading is converted into a character array by
the sprintf function so that we can insert a prefix "W’ into the windspeed reading. This is done to be able to transmit

other data as well. At last the data is transmitted to the basestation via the NRF2/L01 mudule.

3.4 Basestation

@

cntl++
sendSpeed = -300 * mps + 25000

sendSpeed > 25000

false

rue—P‘ sendSpeed = 25000

sendSpeed < 2000

falsie

rue—i‘ sendSpeed = 2000

mpsReady = 1
¢nt1 > sendspeed

false

> cnt1 =0
fue sprintf(mpsArT,“%If’,mps)

v

for(k=i; k<7; k++)
{mpsSend[0] = ‘W’
mpsSend[K] = mpsArt[k-1]}

v

Send_Data_NRF(mpsSend)

<>

Figure 12: Transmit windspeed flowchart

The basestation at the moment only relays data from the NRF24L01 module to the ESP8266 wifi module but later
on the plan is to attach a screen to display the weather data directly and also to receive user input via an interface.

Anemometer

Page 17 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

cnt > 1000 rue—] Read_Data_NRF(data_in) |

data_in[0] ='W/ rue—I printf(*%s \n",data_in)

false fa\lse

cnt++

Figure 13: Basestation flowchart

3.5 Wireless communication

In this section the implementation of the two wireless technologies are discussed.

3.5.1 NRF24L01

As discussed in the analysis it was decided to implement the NRF24L01 RF module. We had no prior experience with
this module, so inspiration was found in other projects on the internet, here one website helped a lot to understand
how the communication between a PIC MCU and a NRF module worked as well as how to configure it the right way®.
The wireless communication between the Anemometer and the Basestation was designed as one-way communication,
where the anemometer sends the measured wind speed to the Basestation via two NRF24L01 modules. Below the
basics of this module as well as the functions are explained:

nRF24L01 Pinout

Figure 14: NRF2/L01 pin out diagram”

*Borrowed from https: //circuitdigest.com/microcontroller-projects/interfacing-nrf24101-rf-module-with-pic-microcontroller

As seen on the figure above the pinout of the NRF24L01 consist of the following pins:

e GND Ground.

e VCC Positive 1.9V - 3.3V.
e CE Chip Enable.

e CSN Chip Select NOT.

e SCK Serial clock.
Shttp://blog.diyembedded.com/2007/06 /tutorials-1-3-for-pic-completed.html?m=1

Anemometer Page 18 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

e MOSI Master Out Slave In.
e MISO Master In Slave Out.

¢ TRQ Interrupt Request.

The CE pin is used to set the NRF to receive(CE=1) or transmit(CE=0). Further it is used in transmit mode. When
a payload has been transferred to the TX_PAYLOAD buffer a high pulse on CE will transmit the payload from the
NRF. The CSN are active low, so before a command is sent from the MCU to the NRF, CSN are pulled low. SCK,
MOSI and MISO are used for the SPI connection. IRQ is an interrupt pin, in this project it is used for ”listening” for
received data from the Anemometer to the Basestation.

To operate the NRF24L01 the datasheet” reveal some commands that are used to eg. read or write a register:

’ Command name \ Command word (binary) \ Operation
R_REGISTER 000A AAAA Read command followed by the register that should be read
W_REGISTER 001A AAAA Write command followed by the register that should be written to
R_RX_PAYLOAD 0110 0001 Read the received payload
W_TX_PAYLOAD 1010 0000 Writes payload to the NRF
FLUSH_TX 1110 0001 Flush TX FIFO
FLUSH_RX 1110 0010 Flush RX FIFO
NOP 1111 1111 Dummy byte that have no effect, can be used when reading a register

Table 2: Table of commands

Furthermore the NRF24L01 have a number of registers that has to be written in order to configure the device®

In the NRF.c and NRF.h the functions used for communicating with the NRF are created. Every time an exchange
of data, between the MCU and NRF, are excecuted the CSN pin are pulled low before and high again after the
transaction.

3.5.1.1 void Write NRF(char reg, char value)

This function first sends the write register command, table 2, followed by the register that should be written to.
Next it sends the value that should be written to the register and after that CSN are pulled high again.

Example:

Write_NRF(0x00,0x0A);

Writes the value of 0x0A to the config register(address 0x00).
3.5.1.2 char Read_NRF(char reg)

This function first sends the read register command, table 2, followed by the register that data should be read from.
Afterwards the data received from the NRF are stored in a variable (RB) and this value are returned from the function.

Example:
Read NRF(0x00);

Reads the data stored in the config register(adress 0x00).

"nRF24L01_Product_Specification_v2_0-9199.pdf
8nRF24L01_Product_Specification_v2_09199.pdf, page 53-58

Anemometer Page 19 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

3.5.1.3 void Write_Buffer NRF(char dest, char * buffer, char amount_bytes)

This function can send a buffer to the NRF module where ”dest” is the register that receives the buffer, the pointer
"buffer” are the buffer that should be transferred and ”amount_bytes” are the amount of bytes the ”buffer” holds.
First a write command is OR’ed with the register are transferred to the NRF followed by a for loop that transfer every
byte spaced with a small delay of 10us.

Example:

Write_Buffer NRF(0xA0, example_buffer, 5);

Transmit the content of ”example_buffer” (5 bytes) to the W_TX_PAYLOAD(0xAOQ), table 2.

3.5.1.4 void Read Buffer NRF(char dest, char * buffer, char amount_bytes)

This function reads the content of a buffer on the NRF. Where ”dest” is the register from where the buffer is received
from, the pointer "buffer” is the array on the MCU that recieves the bytes and ”amount_bytes” are the amount of
bytes to be received. First a write command is OR’ed with the register are transferred to the NRF followed by a for
loop that receives the bytes one by one after the transfer is done the buffer is rounded off with a NULL character.
Example:

Read_Buffer NRF(Read RX_PLD, example_buffer, 5);

Receives the content, 5 bytes, of R_ RX_PAYLOAD(0x61) to the ”example_buffer”.

3.5.1.5 void Send_Data_NRF(char * buffer)

This function is used for sending data from one NRF to another NRF. A buffer is transferred to the function, this
buffer is transferred to the W_TX_PAYLOAD using the Write_Buffer NRF function a high pulse on CE execute the
NRF to transmit the buffer.

Example:

Send_Data NRF (example_buffer);

Transfer the bytes from example_buffer to the NRF and transmit it to another NRF module.

3.5.1.6 void NRF_FLUSH ((void)

This function reset the Data_Ready, Data_Sent and Max_Retransmits interrupt flags. Afterwards the TX FIFO and
RX FIFO registers are flushed. This function makes sure that the interrupt flags and the registers are cleared after
receiving data.

Example:

NRF_FLUSH();

Clear interrupt flags as well as flush RX and TX FIFO registers.

3.5.1.7 void Read_Data_NRF(char *buffer)

Anemometer Page 20 of 54

=
—
=

i

3 DESIGN AND IMPLEMENTATION

This function transfers received data from the NRF. This is used when data are received on the NRF. After the bytes
have been received the Data Ready RX interrupt flag are cleared and the NRF_FLUSH function flush out the TX and
RX FIFO registers.

Example:
Read_Data_NRF(example_buffer);

Reads the data that are ready on the NRF and transfer it to the example_buffer.

3.5.1.8 char Data Ready NRF(void)

This function only works if the RX_DR interrupt mask are activated in the CONFIG register. This function are built
up on polling this function in a while loop, when the STATUS register & 0x40 = 0x40 the function return a zero and
breaks the while loop. Otherwise a one is returned at the while loop carry on.

Example:

while(Data_Ready NRF())
{

}
Read_Data_NRF (example_buffer);

Polling on the Data_Ready NRF(). When the RX data ready flag are raised the while loop breaks and the received
data are transferred to example_buffer with the Read_Data_NRF (example_buffer).

3.5.1.9 void startup_NRF _delay(void)

This function simply inflict a small delay before powering up and configuring the NRF. This is created due to issues
with the SPI initializing were not up and running fast enough, hence this delay gives a little time for the SPI to
stabilize before the MCU begin to communicate with the NRF module.

3.5.1.10 void pwr_up_NRF(void)

This function power up the NRF module by setting the power up bit high in the CONFIG register.

3.5.1.11 void config NRF(void)

This function is the one that setup the NRF module to the required specifications. In the bullet points below the
configuration is explained?®:

e CONFIG Set to RX mode, PWR_UP kept high, CRC disabled, RX_DR kept low to enable interrupt mask(the
other interrupt masks are also used, but in this project the IRQ pin is only used on the receiving MCU.

e EN_AA Auto Acknowledgment disabled.

¢ EN_RXADDR Data pipe 0 enabled.

e SETUP_AW Address width set to 5 bytes.

e SETUP_RETR Not used so set to register is just set to 0x00 which marks a wait for 250us.

e RF_CH Set the channel to FO = 2400M Hz + RF_.CH = 2400M Hz + 50Mhz = 2450 M H z .

Anemometer Page 21 of 54

3 DESIGN AND IMPLEMENTATION

=
—
=

i

¢ RF_SETUP LNA gain off, RF output PWR = 0dBm, Air Data Rate set to 2Mbps.

RX_ADDR_PO Receive address PO set to Oxel,0Oxel,0xel,0xel,Oxel.

TX_ADDR Transmit address set to Oxel,0Oxel,0xel,0xel,Oxel.
¢ RX PW_PO0 Number of bytes in RX payload set to 5 bytes.

After these registers are configured the NRF device are either set to RX or TX operation. If set to RX CE=1 and the

CONFIG register bit 0 are set high. If set to TX CE=0 and the CONFIG register bit 0 are set low.

3.5.2 ESP8266

The ESP8266 wifi module is programmed in Arduino IDE (code is in the appendix) and is relatively simple to operate.
It receives data via UART and then it transmits the data via wifi to a webpage which relays the data to a SQL server.

GPI1O2

[TX_ 4 GpiO1

RandomMerdTutorials

[RX 4 GPIO3

N\,
(GPIOO p—{ FLASH |

Figure 15: ESP8266 pin out diagram”

*Borrowed from https://randomnerdtutorials.com /esp8266-pinout-reference-gpios/

To be a bit more specific the ESP8266 connects to the wifi with the specified network credentials. When it is
connected it ”listens” for data on the UART RX pin. When it receives data it removes the "W’ we have inserted in
the anemometer base, then it creates a connection to the SQL server via the post-esp-data.php (code is in appendix)
webpage and post the data to the server before it closes the connection again and continue to listen for data on the

UART RX.

Anemometer

Page 22 of 54

=
—
=

i

4 TEST

4 Test

4.1 Requirement 1 - Windspeed
4.1.1 Test script

To test the windspeed requirement we send out a square wave signal from a signal generator into the ADC on the PIC
microcontroller. To test if the system can measure windspeeds as low as 0.5 m/s we need a square wave signal with a
frequency of 114 mHz? and to test if the system can measure windspeeds up to 60 m/s we need a square wave signal
with a frequency of 13.7 Hz'°. To see what the system outputs we use a logic analyzer to read UART output from
the PIC microcontroller.

4.1.2 Test performance

As seen on the below figure we feed the ADC with a 0V /500mV square wave signal with a frequency of 114 mHz
and the UART outputs W0.5035 where the W is the prefix for windspeed and 0.5035 is the windspeed in m/s which
corresponds nicely with our requirement of 0.5 m/s.

Welcome - Help Windows = [H &
] Logic 1
File Control View Window
Mode: (&) Repeated ¢ Trigger: Normal ¢ ! Pulse Protocol Position: 4ms
N Single O Stop
- Source: Digital s 100MHz x16 DIO 0.15 Base: 2 msfdiv -
P e T
Name Pin T Armed 4096 samples at 200 kHz | 2021-05-11 11:12:18.332
- UART {s7tw)_Jsoro] J2€l] |{3s(s) Jfaoro Jaara) [{asis1 Joald }
Data Do 0L
x -6ms -4ms -2ms omp 2ms ams 6ms 8ms 10 ms 12ms 14ms
(] Wavegen 1
File Control Edit Window
@ Stop Al Channels ¢ No synchronization
06 Channel 1 (W1)
@Stop | v Enable Simple O Idle: Offset
e QIO | runing |

Frequency: 114 mHz Output
Period: 8.77192982 s
Amplitude: 250 mV
Offset: 250 mV

Symmetry: 50 %

<) [e) e <) I(e) [«

450
50

-50

Phase: o°

Manual Trigger Discovery2 SN:210321ABEDE8 USB -] Status: OK

Figure 16: Windspeed minimum test (0.5 m/s)

As for the 60 m/s test we do the same as above but with a frequency of 13.7 Hz instead. On the figure below we can
see that the UART outputs W61.156 where the W is the prefix for windspeed and 61.156 is the windspeed in m/s
which is a slight bit more than our requirement of 60 m/s. This could be due to the fact that we only time one half
turn on the anemometer which multiply by 2 to get the time for a whole turn and then multiply by the calibration
factor and since it is only an issue at very high windspeeds where it is of less concern if it is 1 m/s higher or lower we
find it acceptable.

Imps = 0.5m/s, trnDist = 0.73m, calibFact = 6, wsUnc = mps/calibFact = 0.08333, tps = wsUnc/trnDist = 0.114H z
Omps = 60m/s, trnDist = 0.73m, calibFact = 6, wsUnc = mps/calibFact = 10, tps = wsUnc/trnDist = 13.7THz

Anemometer Page 23 of 54

TEST

o1y

Welcome - Help Windows

(] Logic 1
File Control View Window
Mode: () Repeated < Trigger: Normal ¢ Pulse Protocol Position: 4 ms v &
N Single 0 Stop = = :
-+ Source: Digital % Base: 2 ms/div Vi
- T
Name Pn T Trig'd | 4096 samples at 200 kHz | 2021-05-1114:17:25.535 5, &
- UART BN SO ETONN EE0I BT ESGH SO EYGH;
Data pioo L
x 6ms 4ms -2ms omg 2ms 4ms 6ms gms 10 ms 12ms 14ms
(] Wavegen 1
File Control Edit Window
@ Stop All Channels ¢ No synchronization ¢
06 Channel 1 (W1)
@sStop | v Enable Simple ¢ Idle: Offset SJE
Type: "LiSquare RS
Frequency: 137 Hz v
Period: 72.9827007 ms v
Amplitude: 250 mv v
Offset: 250 mv v
Symmetry: 50 % 2
Phase: 0° v

Manual Trigger

Discovery2 SN:210321ABEDE8 USB y

Figure 17: Windspeed mazimum test (60 m/s)

4.2 Requirement 2 - Transmission rate

4.2.1 Test script

Status: OK

The transmission rate can be measured by toggling a LED every time a transmission happens and then use an

oscilloscope to measure the time between.

4.2.2 Test performance

As seen in the figure below the transmission rate is about 17 seconds at low windspeeds (114 mHz

¥ WaveForms (new workspace)

= 0.5 m/s).

Welcome Help Windows JEIE
[x] Scope 1
File Control View Window
Export +XY +Zoom FFT Histogram Data Logging Audio X Cursors Y Cursors Notes = Digital
P single P> Scan Mode: @ Screen B Ao [) Source: Channel1 B Condition: _f Rising B Level: 200mv (-] U
|c1 |c2|8000 samples at 160 Hz | 2021-05-1114:48:27.616 *“ =
8
ool [l - Add Channel]
) Channel 1 (12) &
| offse: v [
©1 Width: 16.95 5 :
Range: 500 mvidv (9

Channel 2 (2x)

Logic 1 Scope 1
o Wavegen 1
File Control Edit Window
@ stop All Channels J No synchronization <]
oe Channel 1 (W1)
@stop | EEnable Simple [Idle: Offset 8 (&
Type: LiSquare IR
Frequency: 14 mHz [-]
Period: 877192982 s (-]
Amplitude: 250 mV [-]
Offset: 250 mv a
Symmetry: 50 % [~
Phase: 0° [~]

Manual Trigger Discovery2 SN:210321ABED68 USB y

Figure 18: Low transmission rate test

Status: OK

As seen in the figure below the transmission rate is about 2 seconds at high windspeeds (13.7 Hz = 60 m/s).

Anemometer

Page 24 of 54

=
—
=

=
W WaveForms (new workspace)]
Welcome - Help Windows AEI
[x] Scope 1
File Control View Window
Export +XY +Zoom FFT Histogram i Data Logging Audic X Cursors Y Cursors Notes Digital
Pl single P> Scan Mode: (@ Screen B Auo & Source: Channel 1 B Condition: _{ Rising B Level: 200mV]]

8000 samples at 160 Hz | 2021-06-11 14:47:23.370 = = glv—
v .
X: -10.6933 5 Bl -+ Add Channel]

icegl2my T e e] F 7 F
| i C1 Period: 3.446 5 | 0.2902165 Hz / 50.1 % | channel 1 (1) ©
[[i H i [offset: -1v [-]
L-c1 Width: 1.726 5 L—] L-—} <_|

Range: 500 myjdiv (@

Channel 2 (2)

Logic 1 Scope

(=] Wavegen 1
File Control Edit Window

@ Stop All Channels [No synchronization 2]

(x]5) Channel 1 (W1)
@5Stop | @ Enable Simple @ Idle: Offset 8 ©

Type: Lisquare <] | Running |

Output

Frequency: 13.7 Hz

Period: 72.9927007 ms
Amplitude: 250 mV

Offset: 250 mvV
Symmetry: 50 %

Phase: 0°

Manual Trigger Discovery2 SN:210321ABED68 USB 7 Status: OK .]

Figure 19: High transmission rate test

4.3 Requirement 3 - Transmission type

The transmission type is 2.4GHz wireless transmission via two NRF24L01 modules which we have not tested as such
because we get the expected output every time which we are certain about because of the prefix "W’ we put in front
of every transmission and if we get the W in the beginning of our output the following digits must also be the same
as the input.

4.4 Requirement 4 - IOT
4.4.1 Test script

This requirement has been tested by setting up the signal generator to provide a steady square wave on the ADC and
see if we get the expected windspeed reading on the website.

4.4.2 Test performance

We set up the signal generator with a 1.142 Hz square wave which corresponds to 5 m/s.

Anemometer Page 25 of 54

4 TEST

=
—
=

i

W WaveForms (new workspace)

Welcome - Help Windows A EIEF

[] Wavegen 1
File Control Edit Window
@ stop All Channels [No synchronization 8

[<]5] Channel 1 (W1)
@ stop Enable Simple [Idle: Offset G

Type: "LiSquare [JES |_Running |

Frequency: 1142 Hz [~] Output

Period: 875.666743 ms [~]

Amplitude: 250 mv [~]

Offset: 250 mv' [~]

Symmetry: 50 % [~]

Phase: 0° [~

Manual Trigger

Figure 20: 10T test ADC input

Discovery2 SN:210321ABEDE8 USB

4

Status: OK

And on the website weather.jorgengreve.dk we got a steady 5.02 m/s which is a tiny bit off but within acceptable
limits. (The other data points on the graph except for the zero readings are earlier windspeed readings)

Jergen Drelicharz Greve o A e
BENg electrical engineering About Me Portfalio v Skills

« @ Home

« ~ Graphs
« O Data
- @ About

Updated: 15:36:56]

Weatherstation Home

i > WeatherstationHome

Weatherstation menu

Current windspeed: 5.02 m/s

Contact

Figure 21: 10T test output - weather.jorgengreve.dk

4.5 Requirement 5 - Accessibility

As shown above the windspeed data can be viewed at the website weather.jorgengreve.dk!! where it is also possible
to see at the graph of the past six hours windspeed and data from the last 24 hours.

11 The system is not always up and running because it is still running of of breadboards.

Anemometer

Page 26 of 54

https://weather.jorgengreve.dk

=
—
=

i

4 TEST

4.6 Requirement 6 - Battery

Unfortunately we did not find the time to implement batteries and solar panel before our deadline but it is going to
happen in the future.

Anemometer Page 27 of 54

=
—
=

i

5 CONCLUSION

5 Conclusion

As stated in the problem statement our main problem that we wanted to solve was to find a way to tell how much the
wind is blowing using our knowledge of electronics and microcontrollers. At that we have succeeded by designing and
realising an IOT windspeed measuring device.

We wanted to design and build an anemometer which could send a signal carrying windspeed information to a PIC
microcontroller. That we did, it took some time and some attempts but at the end we had created a fully functional
weatherproof windspeed sensor that can provide windspeed data as a square wave signal to the PIC MCU.

The issue of communicating over longer distance we solved with radio communication in the form of NRF24L01 radio
modules. They are cheap and functional, but definitely not easy to work with when you have to teach yourself how
they work. This alone has taken a lot of hours to solve and we almost dropped the implementation of it before we
had a breakthrough. Fortunately it works perfectly now.

The upload to and display of data on the world wide web succeeded thanks to the ESP8266 wifi module. It seamlessly
connects our project to the internet and thereby qualifies it as an IOT system.

The only problem we wanted to solve and did not succeed with was the anemometer base power issue. But we knew
from the beginning that this was one of the things that we probably did not have enough time to work out. Fortu-
nately we have a long summer coming where this is definitely being implemented together with some more sensors
such as temperature and maybe pressure or other interesting parameters we could measure. We also want to move the
project from the breadboards and onto PCB’s and design boxes that can house the electronics. At last the basestation
needs a screen to display weather data and an interface where you can set certain parameters such as the rate of data
transmissions or change the calibration constants.

If we have to clarify our individual main contributions to this project, Kim has spent a lot of time and energy in
getting the NRF2/L01 radio modules up and running which includes creating headerfiles from scratch (NRF.h and
NRF.c) and Jgrgen’s main contribution is the anemometer code (anemometer.h and anemometer.c).

We headed into this project without any prior knowledge of how to design an anemometer or to set up any form of
wireless communication. But now we have learned a lot about it and will therefore be able to implement both radio
communication and wifi into our future projects which is a huge benefit for us as we both would love to work with
microcontroller systems in our future career as engineers.

At last, as also encouraged in the report, feel free to explore our webpage and youtube videos:

(The anemometer can be down and false values can be posted to the website due to work on the system)

Our webpage with windspeed data: jorgengreve.dk
Anemometer @ work video: youtu.be/4FcZ-f89uGU
Anemometer explode view video: youtu.be/TXc9oVmYras

Anemometer Page 28 of 54

https://weather.jorgengreve.dk
https://youtu.be/4FcZ-f89uGU
https://youtu.be/TXc9oVmYras

=9
—]
=

i

A APPENDIX

A Appendix

A.1 anemometer.c

Anemometer Page 29 of 54

oNOOUTSA, WN B

~
*

*
* Author(s): Kim Holmberg Christensen
* Jargen Drelicharz Greve
*

*x Filename: anemometer.c

*x Version: 1.0

* Date: 16.05.2021

>k

*/

#include <stdio.h>
#include "anemometer.h"

#include "mcc_generated_files/system.h"
#include "mcc_generated_files/adcl.h"
#include "mcc_generated_files/spil.h"

#include "globalVariables.h"

#include "NRF.h"

/xkkpkkrkkx DEFINITIONS FOR getWindspeed() skktoksotoksorksorksoksoskoksroksoroksoroksorokkorokk /

#define channel 0
#define ADCresHIGH 300
#define ADCresLOW 200

#define intrrTime 0.000010

#define trnDist 0.73
#define calibFact 6

//
//
//
//
//
//

ADC channel used

450mvV = 3351

15mv = 112

Timer 1 interrupt time

One scoup turn length in meters
Calibration constant

/*kxxkkkkkk DEFINITIONS FOR getWindspeed() skkskskskskskskskokokokskokskskskokakokokokskskskokskkokokokokokskokok /

#define testMode @

//
//
//

1 = UART and LED, 2 = UART, 3 = LED
The system will transmit more frequent when
testMode is 1

/*kxxkkkkkk VARIABLES FOR getWindspeed() skkskskskskskskkskskokokokskskskskskskokokokokskskokokskkokokokokokskokok /

int 1 = 0; // for loop counting variable

int switchVarl = 0; // The switchVar 1, 2 and 3 variables are used -
int switchVar2 = 0; // to control the anemometer half turn timing -
int switchVar3 = 0; // calculation.

int intrrCntlready = 0; // First half turn interrupt count ready
int intrrCnt2ready = 0; // Second half turn interrupt count ready
int halfTrnlcnt = 0; // Counts number of half turns

int halfTrn2cnt = 0; // Counts number of half turns

int trnTimeReady = 0; // One turn time is calculated and ready
int conversion = 0; // ADC conversion result

int ADCresult = 0; // ADC result (1 or 0)

long intrrCntl = 0; // Holds the latest number of half turn -
long intrrCnt2 = 0; // interrupts.

long tmrlintrrCntl = 0; // Extern variable counted one up in the timer -
long tmrlintrrCnt2 = 0; // 1 interrupt callback function.

double trnTime = 0; // Time of one turn in seconds

double tps = 0; // Number of turns per second

double wsUnc = 0; // Uncalibrated windspeed

volatile int mpsReady = // 1 if m/s result is ready, @ if not
volatile double mps = 0; // Windspeed in meters per second

/*kxxkkkkkk VARIABLES FOR transmitMps () skkskokskskskskskskskokokokokskskskskskskokokokokokskskokskkokokokokokskokok /

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

char dataCheck[6] = {NULL};
char dataBuff[6] = {NULL};
char dataSum = 0;

char mpsArr[6] = {NULL};

char mpsSend[6] = {NULL};
int j = 0;

int k = 0;

int sendSpeed = 0;

float dataAvg = 0;

long cntl = 0;

//
//
//
//
//
//
//
//
//
//

Used to sort out any extreme values

Used to store the five latest mps values
The sum of the latest five mps values

Holds double to char array conv. mps result
Used for inserting a W into the result

for loop counting variable

for loop counting variable

How often to transmit data

Windspeed avg. for extreme value sorting
Used to control the transmission speed

/////////// GET CURRENT WINDSPEED FROM ANEMOMETER //////////////////////////////

void getWindspeed(void)
{

///////7//// GET ADC CONVERSION RESULT //////////////////////////////////////
// MCC generated ADC initialization routine

ADC1_Enable();

ADC1_ChannelSelect(channel);

ADC1_SoftwareTriggerEnable();

for(i=0;i <1000;i++)
{
¥

ADC1_SoftwareTriggerDisable();
while(!'ADC1_IsConversionComplete(channel));
conversion = ADC1_ConversionResultGet(channel);

ADC1_Disable();

// Provide a small delay

////////7///7/ ADC RESULT = HIGH/LOW //////////////7/7///7/7//////////7//7/////////
// Decide if the ADC conversion should be interpreted as 1 or @

if(conversion > ADCresHIGH)

{
ADCresult

}

1;

if(conversion <= ADCresLOW)

{
ADCresult

}

0;

/////////// HALF TURN TIMING ////////////7//777/7/7/77/7///7//7//7//7//////////////
// Using timer interrupt to time a anemometer half turn
if(ADCresult == 1 && switchVarl == 0) // Hall sensor = HIGH

{

intrrCnt2 = tmrlintrrCnt2;

tmrlintrrCntl = 0;
switchVarl =

1;
switchVar2 = 1;

// 2nd half turn interrupt count update
// Begin 1st half turn interrupt count

if(switchvar3 == 1 && halfTrn2cnt < 2) // Make sure only ONE half turn

{

intrrCnt2ready = 1;
switchvar3 = 0;
halfTrn2cnt = 0;

¥

// has passed
// 2nd half turn interrupt count ready

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

if(halfTrn2cnt >= 2)

{
intrrCnt2ready = 0; // 2nd half turn interrupt count NOT ready
halfTrn2cnt = 0; // Restart half turn count
¥
halfTrnlcnt++;

¥

if(ADCresult == 0 && switchVarl == 1 && switchVar2 == 1)// Hall sensor = LOW
{
intrrCntl = tmrlintrrCntl; // 1st half turn interrupt count update
tmrlintrrCnt2 = 0; // Begin 2nd half turn interrupt count
switchVarl 0;
switchVar2 0;
switchVar3 1;

if(halfTrnlcnt < 2) // Make sure only ONE half turn has passed
{
intrrCntlready = 1; // 1lst half turn interrupt count ready
halfTrnlcnt = 0;
}

if(halfTrnlcnt >= 2)
{
intrrCntlready = 0; // 1st half turn interrupt count NOT ready
halfTrnlcnt = 0; // Restart half turn count
¥

halfTrn2cnt++;

¥

/1777777777 WINDSPEED CALC /////////1/7/71777777777777777/77/77/77777777/77777/7

if(intrrCntlready == 1) // Calculate turn time if count is ready
{
intrrCntlready = 0;
trnTime = 2x(intrrCntl * intrrTime); // 2x because of half turn
intrrCntl = 0;
trnTimeReady = 1; // Turn time is ready
b
if(intrrCnt2ready == 1) // Calculate turn time if count is ready
{
intrrCnt2ready = 0;
trnTime = 2x(intrrCnt2 * intrrTime); // 2x because of half turn
intrrCnt2 = 0;
trnTimeReady = 1; // Turn time 1is ready
¥
if(trnTimeReady == 1)
{
if(trnTime != 0) // Avoid division by zero
{
tps = 1/trnTime; // Turns per second
b
else
{
tps = 0.0001;
¥
wsUnc = trnDist * tps; // Uncalibrated Windspeed
mps = wsUnc x calibFact; // Calibrated windspeed in m/s

trnTimeReady = 0;

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

mpsReady = 1;
b

// Windspeed is ready for transmission

/////////// TRANSMIT CURRENT WINDSPEED ///

void transmitMps(void)

{

cntl++;

/////////// DETERMINE HOW OFTEN TO TRANSMIT DATA ///////////////////////////
// cntl is used as a simple timer that counts one up every time to avoid

// using timer interrupt resources on
sendSpeed = -383 * mps + 25000; //

if(sendSpeed > 25000)

//
//

{ //
sendSpeed = 25000; //
}

if(sendSpeed < 2000) //
{ //
sendSpeed = 2000; //
}

if(testMode == 1)
{
sendSpeed = 1000;
¥

//
//

something that does not need it.
Determine transmission interval from
current windspeed (mps))

Limit thelowest transmission speed

to about every 15 seconds if windspeed
is @ m/s

Limit the highest transmission speed
to about every 1 second if windspeed
is 60 m/s

If the system is in test mode 1 it
will transmit more frequently

///////7/7//7 TRANSMIT DATA ////////7777/77777/7/77/7/77777/7777/7/7777/7/7/77/7//7//7/7/
// Transmit about every 10 seconds at low windspeeds and about every second
// at high windspeeds with a fluent transition between low and high

// windspeeds.

if(mpsReady == 1 && cntl > sendSpeed)

{
cntl = 0;

sprintf(mpsArr,"s

mps = 0;

", mps); // Convert double to char array (string)

/////////// PREPARE AND TRANSMIT DATA //////////////////////////////////
// Inserting a W in front of the windspeed data to sort good data from

// bad and to be

for(k=1; k<7; k++)
{
mpsSend [0]
mpsSend [k]
}

Send_Data_NRF(mpsSend) ;

able to send and

lwl;
mpsArr[k-11;

for(k=0; k<=sizeof(mpsSend); k++)

{
mpsSend[i] =
¥

if(testMode == 1)
{

process other types of data later on

// SPI to NRF module

'0'; // Reset the array

// Used for testing the system

241
242
243
244
245
246
247
248
249
250
251
252
253

printf("%s\n",mpsSend); // UART for test
LATBbits.LATB5 = !LATBbits.LATB5; // Control LED
¥

if(testMode == 2) // Used for testing the system
{
printf("%s\n",mpsSend); // UART for test
¥

if(testMode == 3) // Used for testing the system
{

LATBbits.LATB5 = !LATBbits.LATB5; // Control LED
b

=9
—]
=

i

A APPENDIX

A.2 anemometer.h

Anemometer Page 35 of 54

OCoo~NOOULLE WN -

/%

*k

* Author(s): Kim Holmberg Christensen
* Jargen Drelicharz Greve
>k

* Filename: anemometer.h

* Version: 1.0

*x Date: 16.05.2021

>k

*/

#ifndef ANEMOMETER_H
#defineANEMOMETER_H

#ifdef__cplusplus
extern "C" {
#endif

void getWindspeed(void); // Calculate windspeed from ADC data
void transmitMps(void); // Transmit windspeed

#ifdef__cplusplus
b
#endif

#endif/* ANEMOMETER_H */

=9
—]
=

i

A APPENDIX

A.3 NRF.c

Anemometer Page 37 of 54

oNOOUTSA, WN B

54
55
56
57
58
59
60

~
*

*
* Author(s): Kim Holmberg Christensen
* Jargen Drelicharz Greve
*

* Filename: NRF.c

* Version: 1.0

* Date: 16.05.2021

>k

*/

#define FCY (_XTAL_FREQ/2)

#include <xc.h>
#include <libpic30.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdint.h>
#include <stdbool.h>

#include "mcc_generated_files/system.h"
#include "mcc_generated_files/pin_manager.h"
#include "mcc_generated_files/spil.h"
#include "NRF.h"

void Write_NRF(char reg, char value)

{

CSN_1lo

SPI1_Exchange8bit(W_reg | reg);
SPI1_Exchange8bit(value);
CSN_hi

}

char Read_NRF(char reg)
{
char RB;
CSN_T1o
SPI1_Exchange8bit(R_reg | reg);
RB = SPI1_Exchange8bit(0x00);
CSN_hi

return RB;

}

void Write_Buffer_NRF(char dest, char x buffer, char amount_bytes)

{

char 1i;

CSN_T1o
SPI1_Exchange8bit(W_reg | dest);
for (i = @0; i < amount_bytes; i++)

{

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

SPI1_Exchange8bit (xbuffer);
buffer++;
__delay_us(10);

}

CSN_hi

¥

void Read_Buffer_NRF(char dest, char x buffer,
{

char i;

CSN_1lo

SPI1_Exchange8bit(R_reg | dest);

for (i = @; i < amount_bytes; i++)

{
xbuffer = SPI1_Exchange8bit(0xFF);
buffer++;

}

xbuffer = (char)NULL;

CSN_hi

}

void Send_Data_NRF(char * buffer)
{

Write_Buffer_NRF(Write_TX_PLD, buffer, 5);
CE_hi;

__delay_us(200);

CE_1o;

¥

void NRF_FLUSH(void)
{
CSN_T1o
Write NRF(STATUS, 0x70);
__delay_ms(10);
CSN_hi

CSN_1lo
SPI1_Exchange8bit(0xE1); // Flush TX
__delay_ms(10);

CSN_hi

CSN_T1o
SPI1_Exchange8bit(@xE2); // Flush RX
__delay_ms(10);
CSN_hi
}

void Read_Data_NRF(char xbuffer)
{

Read_Buffer_NRF(Read_RX_PLD, buffer, 5);
Write_NRF(STATUS, 0x70);
NRF_FLUSH() ;

char amount_bytes)

121
122
123
124
125
126
127
128
129
130
131
132
133

¥

char Data_Ready NRF(void)

{
if((Read_NRF(STATUS) & 0x40) == 0x40)
{
return 0;
}
return 1;
+

134 void startup_NRF_delay(void)

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

{
__delay_ms(500);
+

void pwr_up_NRF(void)

{

Write_NRF(CONFIG, PWR_UP);
//SPI1_Exchange8bit(0x20 | 0x00);
//SPI1_Exchange8bit(0x02);
__delay_ms(2);

}

void config_NRF(void)

{

char Adress[5] = {0xel,0xel,0xel,0xel,0xel};
Write_NRF(CONFIG, 0x@B); // Setup Config register
Write_NRF(EN_AA, 0x00); // Enable auto ack data pipe®
Write_NRF(EN_RXADDR, 0x01); // Enable data pipe®
Write_NRF(SETUP_AW, 0x@3); // Adress width 3 bytes
Write_NRF(SETUP_RETR, 0x00);

Write_NRF(RF_CH, 0x32); //Set RF channel FO = 2400+RF_CH MHz FQ = 2450 Mhz
Write NRF(RF_SETUP, 0x0f);

Write_Buffer_NRF(W_reg | RX_ADDR_P@, Adress, 5);
Write_Buffer_NRF(W_reg | TX_ADDR, Adress, 5);
Write_NRF(RX_PW_P0@, 0x05);

/xkkrkkokokkkokkkokkkkokkookkookkorkkkS et as RXkskokskorokskoroksoroksoroksotoksokokskokokskokokokskorokskorokskorokkok /
//__delay_us(10);

//Write_NRF(CONFIG, 0x0B);

//CE_hi;

//__delay_us(10);

/ Fokskokokorokskokskokkskokskokskskokskokskokokokoskskokskokoksokskokskskokskokskokkokokskokskokskskokakokskstokoskokskokokokokskokaskoksksokskokskskokokokskokokok /
/FrkskskokkokskokokkkskoksokksoktorskoolokkokokrkSet as TXokskoktokskokokskokskokskorkskokstokskskokskokskokokskokskokokokokskokskokskkok /
__delay_us(10);

Write_NRF(CONFIG, Ox0A);

CE_1lo;

__delay_us(10);

[skokokokokskokskoskokokokokokokokskokskskokskokokokokokskokskskokskokokokskokskokskskskskokskokokokskokskskskskokskokskokskokskskskskokskokskokokokskok sk skokokok /

i

=9
—]
=

i

A APPENDIX

A.4 NRF.h

Anemometer Page 41 of 54

oNOOUTSA, WN R

/%

*k

* Author(s): Kim Holmberg Christensen
* Jargen Drelicharz Greve
>k

* Filename: NRF.h

* Version: 1.0

*x Date: 16.05.2021

>k

*/

#include "mcc_generated_files/system.h"
#include <libpic30.h>

#define CSN_lo LATBbits.LATB10 = 0;
#define CSN_hi LATBbits.LATB10 1;

#define CE_lo LATBbits.LATB9 =

= o

#define CE_hi LATBbits.LATB9 = 1;
#define PWR_UP 0x02
#define TX_mode Ox0A
#define RX_mode 0x0B
#define W_reg 0x20
#define R_reg 0x00
#define Write_TX_PLD OxAQ
#define Read_RX_PLD 0x61
//Register adresses NRF

#define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS ox07
#define OBSERVE_TX 0x08
#define CD 0x09
#define RX_ADDR_PO Ox0A
#define TX_ADDR 0x10
#define RX_PW_PO 0x11

void Write_NRF(char reg, char value);
char Read_NRF(char reg);

void Write_Buffer_NRF(char dest, char x buffer, char amount_bytes);
void Read_Buffer_NRF(char dest, char x buffer, char amount_bytes);
void Send_Data_NRF(char x buffer);
void NRF_FLUSH(void);

void Read_Data_NRF(char xbuffer);
char Data_Ready_ NRF(void);

void startup_NRF_delay(void);

void pwr_up_NRF(void);

61
62 void config_NRF(void);

=
—
=

i

A APPENDIX

A.5 anemometer main.c

Anemometer Page 44 of 54

1 /%

2k

3 > Author(s): Kim Holmberg Christensen
4 % Jargen Drelicharz Greve
5 %

6 * Filename: main.c

7 * Version: 1.0

8 * Date: 16.05.2021

9 x

10 x/

11

12 #include "mcc_generated_files/system.h"
13 #include "mcc_generated_files/adcl.h"
14 #include "NRF.h"

15 #include "anemometer.h"

16

17

18 int main(void)

19 {

20 SYSTEM Initialize(); // MCC initialize

21 startup_NRF_delay(); // SPI startup delay

22 pwr_up_NRF(); // Start the NRF module

23 config_NRF(); // Configure the NRF module
24 ADC1_Initialize(); // Initialize ADC1

25

26 while (1)

27 {

28 getWindspeed(); // Calculate windspeed from ADC data
29 transmitMps(); // Transmit windspeed

30 ¥

31

32 return 1;

33 }

=
—
=

i

A APPENDIX

A.6 basestation main.c

Anemometer Page 46 of 54

OCoo~NOOULLE WN -

18

~
*

Author(s)

Filename:
Version:
Date:

X ¥ X X ¥ X X ¥

*
<

: Kim Holmberg Christensen
Jargen Drelicharz Greve

main.c
1.0
16.05.2021

#include "mcc_generated_files/system.h" // MCC files
#include "NRF.h"
#include <stdio.h>

int main(void)

{

SYSTEM_Initialize(); // MCC initialize
startup_NRF_delay(); // To let SPI get ready for TX
pwr_up_NRF () ; // Power up NRF
config_NRF(); // Configure NRF
char data_in[5] = {NULL}; // NRF received data is stored here
long cnt = 0; // For small delay
int dataRead = 0; // For LED toggle on data receive
while (1)
{
if(cnt > 1000) // Adds a small delay for stability
{
/////////// RECEIVE DATA FROM NRF //////////////////////////////////
while(Data_Ready_NRF()) // Stay while NRF data ready
{
dataRead = 1;
¥
Read_Data_NRF(data_in); // Read NRF data to data_in
if(dataRead == 1) // LED toggle when data is received
{

dataRead = 0;
LATBbits.LATB5 = !LATBbits.LATB5;
}

/////////// WIND DATA PROCESSING ///////////////////////////////////
if(data_in[@0] == 'W') // Select only wind data

{

printf("%s \n",data_in); // Send data to ESP8266 wifi

}

cnt = 0;
+

cnt++;

61 return 1;
62 }

=9
—]
=

i

A APPENDIX

A.7T esp8266.ino

Anemometer Page 49 of 54

/*

Rui Santos

Complete project details at https://RandomNerdTutorials.
com/esp32-esp8266-mysql-database-php/

Permission 1is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files.

The above copyright notice and this permission notice shall be included in

all
copies or substantial portions of the Software.

*/

#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <WiFiClient.h>
#include "secrets.h"

// Replace with your network credentials
const char* ssid SECRET_SSID; // SSID (see secrets.h)
const char* password = SECRET_PASS; // Pswrd (see secrets.h)

// REPLACE with your Domain name and URL path or IP address with path
const char* serverName =
"http://jorgengreve.dk/projects/weatherstation/post-esp-data.php";

// Keep this API Key value to be compatible with the PHP code provided in the

project page.

// If you change the apiKeyValue value, the PHP file /post-esp-data.php also

needs to have the same key
String apiKeyValue = "tPmATS5Ab3j7F9";

String sensorName = "Windspeed";
String dataln;
String data;

int httpResponseCode;

unsigned int timeNow = 0;
unsigned int lastTime = 0;
unsigned int delayed = 5000;
unsigned int dataReady = 0;

void setup() {
Serial.begin(115200);

WiF1i.begin(ssid, password);
Serial.println("Connecting™);

while(WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

ks

Serial.println("™);
Serial.print("Connected to WiFi network with IP Address: ");
Serial.println(WiFi.localIP());

void loop() {

while(Serial.available()) {
data = Serial.readString(); // read the incoming data as string
dataReady = 1;

}

//Check WiFi connection status
1f(WiFi.status()== WL_CONNECTED)

{
if(dataReady == 1)

{

data.remove(@,1); // Removes the 'W' from the windspeed data
HTTPClient http;

// Your Domain name with URL path or IP address with path
http.begin(serverName);

// Specify content-type header
http.addHeader("Content-Type", "application/x-www-form-urlencoded");

// Prepare your HTTP POST request data
String httpRequestData = "api_key=" + apiKeyValue + "&sensor=" +

sensorName + "&valuel=" + String(data) + ;
Serial.println(ChttpRequestData);

// Send HTTP POST request
httpResponseCode = http.POST(httpRequestData);

if (httpResponseCode>0) {
Serial.print("HTTP Response code: ");

Serial.println(httpResponseCode);
}
else {
Serial.print("Error code: ");
Serial.printlnChttpResponseCode);

}

// Free up resources
http.end();

dataReady = 0;

¥
}

else {
Serial.println("WiFi Disconnected");

}

=9
—]
=

i

A APPENDIX

A.8 post-esp-data.php

Anemometer Page 53 of 54

<?php
Ve
Rui Santos
Complete project details at https.//RandomNerdTutorials.com/esp32-esp8266-mysql-database-php/

Permission is hereby granted, free of charge, fo any person obtaining a copy
of this software and associated documentation files.

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
V4

$servername = "localhost";

// REPLACE with your Database name
$dbname = "jorgengreve_dkesp8266_data";
// REPLACE with Database user

$username = "jorgengreve_dkesp8266_data";
// REPLACE with Database user password
Spassword = "X#qe#rf=Tz3n)7Aw]|D#.:";

// Keep this APl Key value to be compatible with the ESP32 code provided in the project page.
// If you change this value, the ESP32 skelch needs to match
$api_key_value = "tPmAT5Ab3j7F9";

$api_key= $sensor = $valuet = "";

if ($_SERVER['REQUEST_METHOD"] == "POST") {
$api_key = test_input($_POST["api_key"]);
if(Sapi_key == $api_key_value) {
$sensor = test_input($_POST["sensor"]);
$valuel = test_input($_POST["value1");

// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);
// Check connection
if ($conn->connect_error) {
die("Connection failed: " . $conn->connect_error);
}
$sql = "INSERT INTO SensorData (sensor, value1)
VALUES (" . $sensor . "', " . $valuet . ")";

if ($conn->query($sql) === TRUE) {
echo "New record created successfully";
}
else {
echo "Error: " . $sql . "
" . $conn->error;
}
$conn->close();
}
else {
echo "Wrong API Key provided.";
}
}

else {
echo "No data posted with HTTP POST.";

}

function test_input($data) {
$data = trim($data);
$data = stripslashes($data);
$data = htmlspecialchars($data);
return $data;

}

	Introduction
	Problem statement
	Methodology

	Analysis
	Anemometer
	Rate of transmissions
	Internet communication
	Transmission between anemometer base and basestation
	Accessibility
	Power Supply
	Requirement specification

	Design and implementation
	System overview
	Anemometer hardware design
	Electrical hardware
	Schematics

	Anemometer software design
	void getWindspeed(void)
	Analog to Digital Conversion
	Half turn timing
	Windspeed calc
	Calibration

	void transmitMps(void)

	Basestation
	Wireless communication
	NRF24L01
	void Write_NRF(char reg, char value)
	char Read_NRF(char reg)
	void Write_Buffer_NRF(char dest, char * buffer, char amount_bytes)
	void Read_Buffer_NRF(char dest, char * buffer, char amount_bytes)
	void Send_Data_NRF(char * buffer)
	void NRF_FLUSH(void)
	void Read_Data_NRF(char *buffer)
	char Data_Ready_NRF(void)
	void startup_NRF_delay(void)
	void pwr_up_NRF(void)
	void config_NRF(void)

	ESP8266

	Test
	Requirement 1 - Windspeed
	Test script
	Test performance

	Requirement 2 - Transmission rate
	Test script
	Test performance

	Requirement 3 - Transmission type
	Requirement 4 - IOT
	Test script
	Test performance

	Requirement 5 - Accessibility
	Requirement 6 - Battery

	Conclusion
	Appendix
	anemometer.c
	anemometer.h
	NRF.c
	NRF.h
	anemometer main.c
	basestation main.c
	esp8266.ino
	post-esp-data.php

